不同溅射气压制备 W/Si 多层膜的实时应力研究

张一志1, 党斌1, 叶天明1, 陈进文1, 朱京涛1, 吴文娟2
(1. 同济大学 物理科学与工程学院 先进微结构材料教育部重点实验室, 上海 200092;
2. 上海应用技术学院 理学院, 上海 201418)

摘要：研究了不同溅射气压条件下磁控溅射制备 W/Si 多层膜过程中的应力变化，使用 X 射线衍射仪测量了多层膜的结构，使用实时应力测量装置研究 W/Si 多层膜沉积过程中的应力演变。结果表明，在溅射气压从 0.05 Pa 增加到 1.10 Pa 的过程中，薄膜沉积过程中产生的压应力不断减小并最终过渡为张应力，应力值在溅射气压为 0.60 Pa 时最小。研究结果对减小膜层应力具有指导意义。

关键词：应力；多层膜；磁控溅射；溅射气压；W/Si
中图分类号：O 484.1 文献标志码：A
doi: 10.3969/j.issn.1005-5630.2015.04.018

Stress of W/Si multilayers deposition under different sputtering pressure

ZHANG Yizhi1, JI Bin1, YE Tianming1, CHEN Jinwen1, ZHU Jingtao1, WU Wenjuan2
(1. MOE Key Laboratory of Advanced Micro-structured Materials, School of Physics Science and Engineering,
Tongji University, Shanghai 200092, China;
2. College of sciences, Shanghai Institute of Technology, Shanghai 201418, China)

Abstract: We studied the relationship between the conditions under different sputtering pressure and the change of stress during the deposition of W/Si multilayer films. The multilayer structures are measured by using X-ray diffractometer. An online stress measurement device was used to measure the stress evolution during the deposition. Experimental results clearly indicate that the compressive stress decreases with the increase of the sputtering pressure from 0.05 Pa to 1.10 Pa. Then the stress changes to tension. The value of stress reaches the minimum at sputtering pressure of 0.60 Pa. The result is instructive in reducing the film stress.

Keywords: stress; multilayers; magnetron sputtering; sputtering pressure; W/Si

引言

多层膜作为极紫外与 X 射线的关键光学材料，已在等离子体诊断、生命科学、天文观测、同步辐射等领域的发挥越来越重要的作用。多层膜 Lune透镜作为一种新型的线性波带片，能够实现 X 射线的纳米聚焦。W/Si 多层膜由于具有化学性质稳定、界面清晰、粗糙度小等优点，是制备多层膜 Lune透镜的理想
材料[1-5]。为了获得高的衍射效率和分辨率,制备多层膜 Laue 透镜的多层膜需要镀制几百甚至上千层才能达到应用要求。因此,膜层生长过程中不可避免的应力会引起膜层褶皱、破裂和基底变形,是多层膜 Laue 透镜研制中必须解决的关键问题。薄膜应力产生的原因很复杂,但主要原因有 2 种:一种是由于不同材料的热膨胀系数不同引起的,由于原因产生的应力称为热应力;一种是薄膜生长过程中的非平衡性或薄膜特有的微观结构引起的,由此原因产生的应力称为内应力。薄膜应力主要是在薄膜生长过程中积累起来的,为了研究薄膜生长过程中应力的变化,探究应力产生机理,对多层膜 Laue 透镜镀制过程中进行实时应力的测量和研究很有意义[6-8]。

1 应力测量方法

1.1 实时应力测量装置

实时应力测量装置原理图如图 1 所示,应力测量系统由氦氖激光器、准直光路、分束镜、CCD 接收器、计算机以及磁控溅射镀膜机组成。由氦氖激光器发射的激光经过准直后被分束镜分为一组平行等间距的激光束。这组激光束通过镀膜机的玻璃窗口照射到镀膜的基片上,而镀膜过程中产生的应力会引起基片的形变,基片的形变会导致经基片反射的平行光束的间距发生变化。通过比较基片反射前后的激光束间距的变化量可以计算出基片曲率变化的大小,而曲率的变化与应力的变化紧密相关,因此通过实时测量激光束间距变化就可得到基片所受应力的大小。经基片反射后的光束会被 CCD 接收并得到光斑图像,再经电脑实时计算出光斑间距。经光斑间距的变化量计算出基片所受应力的大小,实现薄膜沉积过程中应力的实时测量。

1.2 应力计算

薄膜应力会导致基片的弹性弯曲,由 Stoney 公式可以得到薄膜应力和基片曲率之间的关系为

$$
\kappa_{\text{stress}} - \kappa_{\text{strain}} = \frac{6\sigma h_f (1 - \nu)}{E h_i^2}
$$

式中,\(\kappa_{\text{stress}}\) 和 \(\kappa_{\text{strain}}\) 分别为基片形变前后的曲率; \(\sigma\) 为基片所受到应力; \(h_f\) 为薄膜厚度; \(h_i\) 为基片厚度; \(E\) 为基底弹性模量; \(\nu\) 为泊松比。

如图 1 所示,间距为 \(d\) 的 2 束平行光照射到基片上,随着薄膜的沉积基片会产生形变,曲率发生变化(由 \(\kappa_{\text{strain}}\) 到 \(\kappa_{\text{stress}}\)),会导致经基片反射的 2 束光束的间距发生变化,反射前后的光束间距由 \(d\) 变化为 \(d_i + \Delta d\)。假设 2 束光束的入射角为 \(\alpha\),反射光程为 \(L\),根据几何光学可以得到光束间距变化和曲率变化的关系。
式中 L 是 CCD 与基片之间的距离。结合式(1)和式(2)可以得到

$$
\kappa_{post} - \kappa_{pre} = \left(\frac{\delta d}{d_0} \right) \cos \alpha \frac{E h_i}{2L}
$$

式(3)得到应力 σ 和光束间距之间的关系，因此能够通过实时测量光斑间距值来实现薄膜在沉积过程中应力的实时测量。

2 实验结果与分析

2.1 W/Si 多层膜制备工艺

实验采用高真空直流磁控溅射镀膜机制备 W/Si 多层膜。磁控溅射成膜致密，膜层杂质含量少，适合用来制作 X 射线多层膜。首先确定 W 和 Si 的沉积速率，再通过控制样品在不同靶位上的停留时间来控制厚度。W/Si 镀膜过程中，镀膜 W 的功率为 30 W，镀膜 Si 的功率为 40 W，真空室的本底真空为 2.0×10^-4 Pa，Ar 气纯度为 99.999%。实验中采用溅射气压分别为 0.05 Pa, 0.30 Pa, 0.60 Pa, 0.90 Pa, 1.10 Pa制备标记为 S1, S2, S3, S4, S5 的 5 种样品。多层膜的设计厚度均为 27.5 nm，利用 X 射线衍射仪对制备的单层膜和周期多层膜进行掠入射反射测试，通过拟合来获得单层膜的厚度和周期多层膜的周期厚度。衍射仪所用的 X 射线光源是经单色器准直的 Cu 靶的 Kα 线，波长 λ 为 0.145 nm。图 2 是溅射气压为 0.05 Pa 时的 W/Si 周期多层膜的掠入射反射测试数据和拟合线，测量结果表明，W/Si 多层膜的周期厚度为 27.3 nm，与设计值基本一致。按照同样方法测得的溅射气压分别为 0.30 Pa, 0.60 Pa, 0.90 Pa, 1.10 Pa 程序样品的周期厚度分别为 28.5 nm, 26.8 nm, 26.5 nm, 25.6 nm，也与设计值基本一致。

实验使用 0.15 mm 厚度、直径为 30 mm 的超光滑玻璃基底，利用 Vecco 公司的 Dektak 6M 台阶仪对镀膜前玻璃基底的形貌进行测量。每次样品的测量都是用电子束沿着玻璃基底表面的两个相互垂直的方向进行扫描，记作 XY 方向。不同基底镀膜前 X 轴方向的面型测试曲线如图 3 所示。

从图中可以看出，由于基片非常薄，基片略有弯曲。

![图 2 Si 样品掠入射反射测试数据及拟合曲线](image2)

图 2 Grazing incidence X-ray reflectivity measured and fitted results of curve of Si

在薄膜沉积过程中样品会在 W 靶、Si 靶、应力测试 3 个位置停留，每镀制完一层薄膜样品回到应力测试点进行应力测试，整个薄膜沉积过程中 10 个周期会进行 20 次的应力测试，不同溅射气压条件下的样品薄膜沉积过程中的曲率变化如图 4 所示。不同工作气压条件下，在薄膜生长过程中基片的曲率均是呈线性变化的，工作气压在从 0.05 Pa 增大到 1.10 Pa 的过程中，基片曲率曲线的斜率呈不断增大的趋势。对应的基片所受

![图 3 镀膜前玻璃基底表面 X 方向的形貌](image3)

图 3 Surface profile measurement along X-direction of substrates before deposition Totong

2.2 W/Si 多层膜实时应力测量实验结果

使用实时应力测量装置对不同溅射气压条件下的 W/Si 多层膜的应力变化进行了测量，薄膜沉积过程中样品会在 W 靶、Si 靶、应力测试 3 个位置停留，每镀制完一层薄膜样品回到应力测试点进行应力测试，整个薄膜沉积过程中 10 个周期会进行 20 次的应力测试，不同溅射气压条件下的样品薄膜沉积过程中的曲率变化如图 4 所示。不同工作气压条件下，在薄膜生长过程中基片的曲率均是呈线性变化的，工作气压在从 0.05 Pa 增大到 1.10 Pa 的过程中，基片曲率曲线的斜率呈不断增大的趋势。对应的基片所受
的应力由压应力转变为张应力。

由式(1)变形可以得到

\[\sigma = \frac{\kappa_{\text{post}} - \kappa_{\text{pre}}}{h_f} \cdot \frac{E h_i^2}{6(1 - \nu)} \] \((4) \)

式中 \(E, \nu, h_i \) 值在不同溅射气压实验中均不变。结合图4和式(4)可知：不同溅射气压条件下薄膜沉积过程中的应力大小与薄膜曲率变化曲线的斜率是线性相关的；从图4中容易看出不同溅射气压条件下样品在薄膜沉积过程中产生的应力是稳定的，当溅射气压从0.05 Pa不断增加到1.10 Pa时，随着溅射气压不断增大，样品的曲率变化曲线的斜率呈不断增大的趋势，对应的样品的压应力不断减小，最终转变为张应力。不同样品镀膜前后曲率及应力值如表1所示。

表1 不同溅射气压下样品镀膜前后曲率和应力值

<table>
<thead>
<tr>
<th>样品编号</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S4</th>
<th>S5</th>
</tr>
</thead>
<tbody>
<tr>
<td>工作气压/Pa</td>
<td>0.05</td>
<td>0.30</td>
<td>0.60</td>
<td>0.90</td>
<td>1.10</td>
</tr>
<tr>
<td>(\kappa_{\text{pre}})/m^{-1}</td>
<td>-0.026</td>
<td>-0.025</td>
<td>-0.055</td>
<td>-0.056</td>
<td>-0.035</td>
</tr>
<tr>
<td>(\kappa_{\text{post}})/m^{-1}</td>
<td>-0.427</td>
<td>-0.379</td>
<td>-0.147</td>
<td>0.0743</td>
<td>0.249</td>
</tr>
<tr>
<td>应力/MPa</td>
<td>-540.15 -476.86 -123.92</td>
<td>175.51</td>
<td>382.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

图4 不同溅射气压下薄膜沉积过程中曲率变化

Fig. 4 Curvature data for sputtering at different gas pressure

由表1可以看出：不同样品镀膜前曲率相差较小，镀膜后所有样品的曲率均产生了较大变化，溅射气压从0.05 Pa增加到1.10 Pa时，曲率由-0.427 m^{-1}增加到0.249 m^{-1}，其中当工作压力为0.60 Pa时，曲率变化较小；随着溅射气压增加，对应的应力值由-540.15 MPa的压应力转变为382.55 MPa的张应力，当溅射气压为0.60 Pa时，应力值为-123.92 MPa的压应力。

应力实验结果表明：在溅射气压不断增大的过程中，W/ Si 多层膜沉积过程中产生的压应力不断减小，最终转变为张应力。这种应力转变是与磁控溅射工艺沉积薄膜过程中应力产生的机理相关。磁控溅射相对其他薄膜沉积方法的显著特点是原子到生长表面相对有较高的动能，高能原子向前轰击或是原子向后反弹引起表面损伤产生过剩间隙原子的“原子撞击”是磁控溅射薄膜沉积过程中形成压应力的主要原因。随着溅射气压的增大，膜层表面的高能原子不断增多，导致膜层表面与样品表面转移过程中与氩原子的碰撞几率增大，沉积原子到达样品表面时动能减小，从而沉积的薄膜的压应力减小。随着溅射气压的继续增大，溅射粒子到达样品表面时的动能不断减小，由“原子撞击”对薄膜沉积形成的应力影响越来越小，而Si原子沉积在W膜层表面时，Si原子产生的扩散，原子半径较小的Si占据W膜层表面较大的空位而产生拉伸作用，随着溅射气压的不断增大，这种拉伸作用占据了对薄膜应力影响的主导作用，从而在溅射气压不断增大的过程中，薄膜沉积过程中产生的压应力不断减小，最终转变为张应力。

3 结 论

通过实时应力测量实验，研究了直流磁控溅射在不同溅射气压条件下制备的W/ Si 多层膜的应力特性。实验结果表明，W/ Si 多层膜在不同溅射气压条件下的应力均比较稳定，随着溅射气压的不断增大，W/ Si 多层膜沉积过程中的压应力不断减小，最终转变为张应力。其中，当溅射气压为0.60 Pa时，制备出薄膜的应力值最小，为-123.92 MPa的压应力，因此，溅射气压为0.60 Pa时能够制备出应力特性较好的W/ Si 多层膜。
参考文献：

[1] 朱京涛，王蓓，徐克，等．美国钢轨 X 射线激光用多层膜反射镜的研制[J]．光学仪器，2006，28(4)：146-149．

（编辑：刘铁英）

（上接第 451 页）

[8] 石继红，贺清云，张华，等．智能轮椅床的多方位红外体温检测系统设计[J]．传感器与微系统，2012，22(1)：113-116．
[9] 滕兵，陈静涛，黄鑫海．轮椅床的结构设计[J]．机械制造与自动化，2015，29(3)：87-91．

（编辑：刘铁英）